Finding the N Nth Roots of any number (real, imaginary, negative, positive, comple

Find the N Nth Roots of z, where:

$$z = x + i \cdot y$$

using Euler's relationship, rewrite z:

$$z = A \cdot e^{i\theta}$$

$$z^{\frac{1}{N}} = \left(A \cdot e^{i \cdot \theta}\right)^{\frac{1}{N}}$$
$$z^{\frac{1}{N}} = A^{\frac{1}{N}} \cdot e^{\frac{i \cdot \theta}{N}}$$

we recognize this a point on Euler's circle in the complex plane with magnitude (radius), A^{1/N}

as before, we solve for θ from the first equation defining z:

$$\theta = atan\left(\frac{y}{x}\right)$$
 again where θ can range from 0 to 2π (or $-\pi$ to π)

to find the N roots, divide the initial Euler angle (θ) by N; recall that you can (and must) add or subtract multiples of 2π to θ to find all the solutions.

Example 1. For the number i, find the three cubic roots.

Radius of circle and magnitude of all roots = $(1)^{1/3}$ = 1

$$\theta = atan(\infty) = \frac{\pi}{2}$$
 (or 90 degrees on the Euler circle)

First root is at $^{1}/3 \times \theta$ or $\pi/6$ (i.e 30 degrees).

$$R(1) = \cos\left(\frac{\pi}{6}\right) + i \cdot \sin\left(\frac{\pi}{6}\right) \text{ or } \qquad R(1) = \cos(30) + i \cdot \sin(30)$$

if you recall your trig tables, we can fill this in as

$$R(1) = \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot i$$

For the second root, add 2π to θ :

Second root is at $1/3 \times 5\pi/2 = 5\pi/6$ (i.e. 150 deg)

Again recalling our trig tables,

$$R(2) = -\frac{\sqrt{3}}{2} + \frac{1}{2} \cdot i$$

For the third rood, add another 2π to θ Second root is at 1/3 x $9\pi/2 = 3\pi/2$ (i.e. 270 deg)

$$R(3) = -i$$

We also observe that the 3 roots are equally positioned 120-degrees apart around the Euler circle. In fact this is true for all Nth roots. The square roots at 180 degree apart, cube roots 120 degrees, Fourth roots, 90 degrees, etc, *ad infinitum*

Example 2. With this observation, we can begin to compute some higher order roots without the aid of pencil, paper, spreadsheets or calculators. Find the three cubic roots of a positive number. Start with 1.

By inspection, one root is +1. The other 2 roots must be 120 degrees away.

Root(2) =
$$\frac{-1}{2} + i\frac{\sqrt{3}}{2}$$
 Root(3) = $\frac{-1}{2} - i\frac{\sqrt{3}}{2}$

To find the cube root of any other real number, simply scale each solution (real a imagninary parts) by $N^{1/3}$

- 1. Each and every number that can be located on the complex plane (with the exception of zero) has N distinct and unique Nth roots.
- 2. Descriing in Euler format

roots magnitude = $A^{1/N}$ where A is the complex absolute value of the original number to have roots computed.

Postion $\Phi_i = (\theta + 2M\pi)/N$ where M is any integer.

Note: roots will be equally postitioned around the Euler circle

3. In (real, imaginary) format

roots =
$$A^{1/2} x (\cos \Phi_i + i \sin \Phi_i)$$