Natural logarithms of any number (real, imaginary, complex)

$$a + b \cdot i = e^{z}$$

 $ln(a + b \cdot i) = z$ by definition

z can also be a complex number

$$ln(a + b \cdot i) = c + d \cdot i$$

Starting with original equation

$$a + b \cdot i = e^{c + d \cdot i}$$

Using Euler's relationship, $e^{ix} = cos(x) + i*sin(x)$ and law of exponents, $y^{N+M} = y^{N} * Y^{M}$

$$a + b \cdot i = e^{c} \cdot e^{i \cdot d}$$

we can solve for c, observing that e^c = radius of the Euler circle on complex plane

$$e^{c} = \sqrt{a^2 + b^2}$$

$$c = \ln\left(\sqrt{a^2 + b^2}\right)$$

d is the angle that locates the number on the complex plane, or

$$d = atan \left(\frac{b}{a}\right)$$
 where d can range from 0 to 2π (or $-\pi$ to $+\pi$)

Conclusions

1. Every number (positive, negative, real, imaginary and complex) that can be written as a+bi has a logarithm, except zero. Any number can be written as having a real part, a, and an imaginary part, b x i.

Real =
$$R \cdot \cos(\theta)$$
 Imaginary = $R \cdot \sin(\theta)$
where
 $\theta = a \tan\left(\frac{b}{a}\right)$

$$R = \ln\left(\sqrt{a^2 + b^2}\right)$$

2. Since there are infinitely many roots to atan(b/a), there are infinitely many logartithms for any number. For any number a+b*i, its logarithms are

$$R \cdot \cos(\theta) + i \cdot R \cdot \sin(\theta + N \cdot 2 \cdot \pi)$$

Where N is any integer from $-\infty$ to $+\infty$.

Example 1: What are the logarithms of 1?

$$R = 0$$
 [i.e. $a^2+b^2=1$; $ln(1)=0$]

$$\theta = 0 + M \cdot 2 \cdot \pi$$

$$ln(1) = 0 + 2 \cdot \pi \cdot i$$

also

$$ln(1) = 4 \cdot \pi \cdot i$$

etc

Example 2. What is the logarithm of i (sqrt(-1))?

Again, R=0, but θ = π /2 (or 90 degrees)

$$\ln(i) = 0 + i \cdot \frac{\pi}{2}$$

also

$$\ln(i) = i \cdot \frac{5 \cdot \pi}{2}$$

etc ...

Example 3. So now you are wondering, what is the logarithm of -1? We didn't learn that in calculus

Again R=1, but now θ = π , or 180 degrees (sort of a weird thing, but we are taking the atan of (-1))

$$ln(-1) = i \cdot \pi$$

also

$$ln(i) = i \cdot 3 \cdot \pi$$

let's try it out

$$e^{i \cdot 3 \cdot \pi} = -1$$

$$ln(-1) = 3.142i$$

$$i := \sqrt{-1}$$