Natural logarithms of any number (real, imaginary, complex)
$\mathrm{a}+\mathrm{b} \cdot \mathrm{i}=\mathrm{e}^{\mathrm{z}}$
$\ln (a+b \cdot i)=z \quad$ by definition
z can also be a complex number
$\ln (\mathrm{a}+\mathrm{b} \cdot \mathrm{i})=\mathrm{c}+\mathrm{d} \cdot \mathrm{i}$
Starting with original equation
$a+b \cdot i=e^{c+d \cdot i}$
Using Euler's relationship, $\mathrm{e}^{\mathrm{ix}}=\cos (\mathrm{x})+\mathrm{i}^{*} \sin (\mathrm{x})$
and law of exponents, $\mathrm{y}^{\mathrm{N}+\mathrm{M}}=y^{\mathrm{N}} * \mathrm{Y}^{\mathrm{M}}$
$a+b \cdot i=e^{c} \cdot e^{i \cdot d}$
we can solve for c , observing that $\mathrm{e}^{\mathrm{c}}=$ radius of the Euler circle on comple) plane
$\mathrm{e}^{\mathrm{c}}=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
$c=\ln \left(\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}\right)$
d is the angle that locates the number on the complex plane, or
$d=\operatorname{atan}\left(\frac{b}{a}\right) \quad$ where d can range from 0 to 2π (or $-\pi$ to $+\pi$)

Conclusions

1. Every number (positive, negative, real, imaginary and complex) that can be written as a+bi has a logarithm, except zero. Any number can be written as having a real part, a, and an imaginary part, bxi.

$$
\text { Real }=\mathrm{R} \cdot \cos (\theta) \quad \text { Imaginary }=\mathrm{R} \cdot \sin (\theta)
$$

where
$\theta=\operatorname{atan}\left(\frac{b}{a}\right)$

$$
\begin{aligned}
& \text { and } \\
& \mathrm{R}=\ln \left(\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}\right)
\end{aligned}
$$

2. Since there are infinitely many roots to atan(b/a), there are infinitely many logartithms for any number. For any number $a+b * i$, its logarithms are

$$
\mathrm{R} \cdot \cos (\theta)+\mathrm{i} \cdot \mathrm{R} \cdot \sin (\theta+\mathrm{N} \cdot 2 \cdot \pi)
$$

Where N is any integer from $-\infty$ to $+\infty$.

Example 1: What are the logarithms of 1 ?

$$
\begin{aligned}
& \mathrm{R}=0 \quad\left[\text { [i.e. } \mathrm{a}^{2}+\mathrm{b}^{2}=1 ; \ln (1)=0\right] \\
& \theta=0+\mathrm{M} \cdot 2 \cdot \pi \\
& \ln (1)=0+2 \cdot \pi \cdot \mathrm{i}
\end{aligned}
$$

also

$$
\ln (1)=4 \cdot \pi \cdot i
$$

etc

Example 2. What is the logarithm of i (sqrt(-1))?
Again, $R=0$, but $\theta=\pi / 2$ (or 90 degrees)

$$
\ln (\mathrm{i})=0+\mathrm{i} \cdot \frac{\pi}{2}
$$

also

$$
\ln (\mathrm{i})=\mathrm{i} \cdot \frac{5 \cdot \pi}{2}
$$

etc ...

Example 3. So now you are wondering, what is the logarithm of -1? We didn't learn that in calculus

Again $R=1$, but now $\theta=\pi$, or 180 degrees (sort of a weird thing, but we are taking the atan of (-1))

$$
\ln (-1)=\mathrm{i} \cdot \pi
$$

also

$$
\ln (\mathrm{i})=\mathrm{i} \cdot 3 \cdot \pi
$$

let's try it out

$$
\mathrm{e}^{\mathrm{i} \cdot 3 \cdot \pi}=-1
$$

$$
\ln (-1)=3.142 \mathrm{i}
$$

$$
\mathrm{i}:=\sqrt{-1}
$$

